Linear Algebra and the C Language/a0lz


Eigenvalues and eigenvectors:

An eigenvector is a vector that has its direction unchanged (or reversed) by a given linear transformation ... Wikipedia: Eigenvalues and eigenvectors

To study this work you must have seen those on Gauss-Jordan Partial Pivoting and Free Variables

Eigenvalues with multiple multiplicity:

Two identical eigenvalues :

  • Calculate the two eigenvectors of the two identical eigenvalues:
  • c01b.c
  • Calculate the last eigenvector:
  • c01c.c

Three identical eigenvalues :

  • Calculate the three eigenvectors of the three identical eigenvalues:
  • c02b.c
  • Calculate the last eigenvector:
  • c02c.c

Twice two identical eigenvalues :

  • Calculate the two first eigenvectors of the two first identical eigenvalues:
  • c03b.c
  • Calculate the two last eigenvectors of the two last identical eigenvalues:
  • c03c.c

Three identical zero eigenvalues :

  • It’s possible that the process for calculating multiple eigenvalues will diverge and produce incorrect results.We can obtain these values through Octave, and then calculate the eigenvectors in the same way as previously.
  • Verify with Octave:
  • c04a.c
  • Calculate the three eigenvectors of the three identical zero eigenvalues:
  • c04b.c
  • Calculate the last eigenvector:
  • c04c.c