Linear Algebra and the C Language/a0ma


Install and compile this file in your working directory.

/* ------------------------------------ */
/*  Save as :   c04c.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define   RCA    RC4
/* ------------------------------------ */
#define    EV    R1  
/* ------------------------------------ */
int main(void)
{
double a[RCA*RCA]={
+9.825339522090, +7.309094034726, -3.954100051573, -1.198212136840, 
+7.309094034726, +5.437252879491, -2.941464672512, -0.891352931064, 
-3.954100051573, -2.941464672512, +1.591284167096, +0.482207323363, 
-1.198212136840, -0.891352931064, +0.482207323363, +0.146123431322 
};

double evalue[RCA*C1]={
+17, 
 -0,  
 -0, 
 -0      
};

double **A        =     ca_A_mR(a,                    i_mR(RCA,RCA));
double **EValue   =     ca_A_mR(evalue,               i_mR(RCA,C1));

double **Ide      =      eye_mR(                      i_mR(RCA,RCA));
double **sIde     =     smul_mR(EValue[EV][C1],Ide,   i_mR(RCA,RCA));
double **AmnssIde =      sub_mR(A,sIde,               i_mR(RCA,RCA));

double **b        =       m0_mR(i_mR(RCA,C1));
double **Ab       = c_A_b_Ab_mR(AmnssIde,b, i_Abr_Ac_bc_mR(RCA,RCA,C1));

double **Ab_free  =                         i_Abr_Ac_bc_mR(RCA,RCA,RCA);
double **b_free   =                                   i_mR(RCA,RCA);

double **V        =                                   i_mR(RCA,RCA);

  clrscrn();
  printf(" An eigenvector associated with an eigenvalue\n"
         " with single multiplicity  is unique, up to a\n"
         " change in the sign.                     \n\n\n"
         " A:");
  p_mR(A,S10,P5,C10);
  
  
        gj_PP_mR(Ab,NO);  
    put_zeroR_mR(Ab,Ab_free);
    put_freeV_mR(Ab_free); 
        gj_PP_mR(Ab_free,YES);      
       c_Ab_b_mR(Ab_free,b_free);

          c_c_mR(b_free,C2,V,EV);  
                    
    Normalize_mR(V);
           
           
          printf("\n\n\n"
                 " Copy V%d into the last file\n\n"
                 " V%d:",EV,EV);
          P_mR(V,S10,P12,C10);   
  stop();
             
  f_mR(A);
  f_mR(EValue);
  
  f_mR(Ide);
  f_mR(sIde);
  f_mR(AmnssIde);
  
  f_mR(Ab);
  f_mR(b);
  f_mR(Ab_free);    
  f_mR(b_free);
  
  f_mR(V); 

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */

Screen output example:

                                                                                       
 An eigenvector associated with an eigenvalue
 with single multiplicity  is unique, up to a
 change in the sign.                     


 A:
  +9.82534   +7.30909   -3.95410   -1.19821 
  +7.30909   +5.43725   -2.94146   -0.89135 
  -3.95410   -2.94146   +1.59128   +0.48221 
  -1.19821   -0.89135   +0.48221   +0.14612 




 Copy V1 into the last file

 V1:
-0.760237560476,       -nan,       -nan,       -nan, 
-0.565542575476,       -nan,       -nan,       -nan, 
+0.305949262143,       -nan,       -nan,       -nan, 
+0.092711897619,       -nan,       -nan,       -nan  

 Press return to continue.