Linear Algebra and the C Language/a0lw
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as: c01c.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RCA RC3
/* ------------------------------------ */
#define EV R1
/* ------------------------------------ */
int main(void)
{
double a[RCA*RCA]={
+8.146673651126, +0.924044002095, +1.085385018334,
+0.924044002095, +13.821477213201, +6.837925615505,
+1.085385018334, +6.837925615506, +16.031849135673
};
double **A = ca_A_mR(a, i_mR(RCA,RCA));
double **EValue = eigs_mR(A, i_mR(RCA,RCA));
double **Ide = eye_mR( i_mR(RCA,RCA));
double **sIde = smul_mR(EValue[EV][C1],Ide, i_mR(RCA,RCA));
double **AmnssIde = sub_mR(A,sIde, i_mR(RCA,RCA));
double **b = m0_mR(i_mR(RCA,C1));
double **Ab = c_A_b_Ab_mR(AmnssIde,b, i_Abr_Ac_bc_mR(RCA,RCA,C1));
double **Ab_free = i_Abr_Ac_bc_mR(RCA,RCA,RCA);
double **b_free = i_mR(RCA,RCA);
double **V = i_mR(RCA,RCA);
clrscrn();
printf(" An eigenvector associated with an eigenvalue\n"
" with single multiplicity is unique, up to a\n"
" change in the sign. \n\n\n"
" A:");
p_mR(A,S10,P5,C10);
gj_PP_mR(Ab,NO);
put_zeroR_mR(Ab,Ab_free);
put_freeV_mR(Ab_free);
gj_PP_mR(Ab_free,YES);
c_Ab_b_mR(Ab_free,b_free);
c_c_mR(b_free,C2,V,EV);
Normalize_mR(V);
printf("\n\n\n"
" Copy V%d into the last file\n\n"
" V%d:",EV,EV);
P_mR(V,S10,P12,C10);
stop();
f_mR(A);
f_mR(EValue);
f_mR(Ide);
f_mR(sIde);
f_mR(AmnssIde);
f_mR(Ab);
f_mR(b);
f_mR(Ab_free);
f_mR(b_free);
f_mR(V);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Screen output example:
An eigenvector associated with an eigenvalue
with single multiplicity is unique, up to a
change in the sign.
A:
+8.14667 +0.92404 +1.08539
+0.92404 +13.82148 +6.83793
+1.08539 +6.83793 +16.03185
Copy V1 into the last file
V1:
+0.102355700213, -nan, -nan,
+0.644840911344, -nan, -nan,
+0.757432181579, -nan, -nan
Press return to continue.