Atmosphere of Earth
The atmosphere of Earth consists of a layer of mixed gas that is retained by gravity, surrounding the Earth's surface. It contains variable quantities of suspended aerosols and particulates that create weather features such as clouds and hazes. The atmosphere serves as a protective buffer between the Earth's surface and outer space. It shields the surface from most meteoroids and ultraviolet solar radiation, reduces diurnal temperature variation – the temperature extremes between day and night, and keeps it warm through heat retention via the greenhouse effect. The atmosphere redistributes heat and moisture among different regions via air currents, and provides the chemical and climate conditions that allow life to exist and evolve on Earth.
By mole fraction (i.e., by quantity of molecules), dry air contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other trace gases (see Composition below for more detail). Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere.
Earth's primordial atmosphere consisted of gases accreted from the solar nebula, but the composition changed significantly over time, affected by many factors such as volcanism, outgassing, impact events, weathering and the evolution of life (particularly the photoautotrophs). In the present day, human activity has contributed to atmospheric changes, such as climate change (mainly through deforestation and fossil-fuel–related global warming), ozone depletion and acid deposition.
The atmosphere has a mass of about 5.15×1018 kg,[2] three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of the surface. The atmosphere becomes thinner with increasing altitude, with no definite boundary between the atmosphere and outer space. The Kármán line at 100 km (62 mi) is often used as a conventional definition of the edge of space. Several layers can be distinguished in the atmosphere based on characteristics such as temperature and composition, namely the troposphere, stratosphere, mesosphere, thermosphere (formally the ionosphere), and exosphere. Air composition, temperature and atmospheric pressure vary with altitude. Air suitable for use in photosynthesis by terrestrial plants and respiration of terrestrial animals is found within the troposphere.[3]
The study of Earth's atmosphere and its processes is called atmospheric science (aerology), and includes multiple subfields, such as climatology and atmospheric physics. Early pioneers in the field include Léon Teisserenc de Bort and Richard Assmann.[4] The study of the historic atmosphere is called paleoclimatology.
- ^ "Gateway to Astronaut Photos of Earth". NASA. Retrieved 2018-01-29.
- ^ Lide, David R., ed. (May 28, 1996). Handbook of Chemistry and Physics (77th ed.). Boca Raton, FL: CRC Press. pp. 14–17. ISBN 978-0849304774.
- ^ "What Is... Earth's Atmosphere? - NASA". 2024-05-13. Retrieved 2024-06-18.
- ^ Vázquez, M.; Hanslmeier, A. (2006). "Historical Introduction". Ultraviolet Radiation in the Solar System. Astrophysics and Space Science Library. Vol. 331. Springer Science & Business Media. p. 17. Bibcode:2005ASSL..331.....V. doi:10.1007/1-4020-3730-9_1. ISBN 978-1-4020-3730-6.