Diplodocus
| Diplodocus Temporal range: Late Jurassic (Kimmeridgian),
| |
|---|---|
| Mounted D. carnegii (or "Dippy") skeleton at the Carnegie Museum of Natural History; considered the most famous single dinosaur skeleton in the world.[1][2] | |
| Scientific classification | |
| Kingdom: | Animalia |
| Phylum: | Chordata |
| Class: | Reptilia |
| Clade: | Dinosauria |
| Clade: | Saurischia |
| Clade: | †Sauropodomorpha |
| Clade: | †Sauropoda |
| Superfamily: | †Diplodocoidea |
| Family: | †Diplodocidae |
| Subfamily: | †Diplodocinae |
| Genus: | † Marsh, 1878 |
| Type species | |
| †Diplodocus longus (nomen dubium) Marsh, 1878
| |
| Other species | |
| |
| Synonyms | |
| |
Diplodocus (/dɪˈplɒdəkəs/,[3][4] /daɪˈplɒdəkəs/,[4] or /ˌdɪploʊˈdoʊkəs/[3]) is an extinct genus of diplodocid sauropod dinosaurs known from the Late Jurassic of North America. The first fossils of Diplodocus were discovered in 1877 by S. W. Williston. The generic name, coined by Othniel Charles Marsh in 1878, is a Neo-Latin term derived from Greek διπλός (diplos) "double" and δοκός (dokos) "beam",[3][5] in reference to the double-beamed chevron bones located in the underside of the tail, which were then considered unique.
The genus lived in what is now mid-western North America, at the end of the Jurassic period. It is one of the more common dinosaur fossils found in the middle to upper Morrison Formation, with most specimens being found in rocks dated between about 151.88 and 149.1 million years ago,[6][7] during the latest Kimmeridgian Age,[8] although it may have made it into the Tithonian,[9] with at least one specimen (AMNH FR 223) being potentially from among the youngest deposits of the formation.[6] The Morrison Formation records an environment and time dominated by gigantic sauropod dinosaurs, such as Apatosaurus, Barosaurus, Brachiosaurus, Brontosaurus, and Camarasaurus.[10] Its great size may have been a deterrent to the predators Allosaurus and Ceratosaurus: their remains have been found in the same strata, which suggests that they coexisted with Diplodocus.
Diplodocus is among the most easily identifiable dinosaurs, with its typical sauropod shape, long neck and tail, and four sturdy legs. For many years, it was the longest dinosaur known.
- ^ Ulrich Merkl (November 25, 2015). Dinomania: The Lost Art of Winsor McCay, The Secret Origins of King Kong, and the Urge to Destroy New York. Fantagraphics Books. ISBN 978-1-60699-840-3.
Although it narrowly failed to win the race with the New York Museum of Natural History in 1905, the Diplodocus carnegii is the most famous dinosaur skeleton today, due to the large number of casts in museums around the world
- ^ Breithaupt, Brent H, The discovery and loss of the “colossal” Brontosaurus giganteus from the fossil fields of Wyoming (USA) and the events that led to the discovery of Diplodocus carnegii: the first mounted dinosaur on the Iberian Peninsula, VI Jornadas Internacionales sobre Paleontología de Dinosaurios y su Entorno, September 5–7, 2013, p.49: "“Dippy" was and still is the most widely seen and best-known dinosaur ever found."
- ^ a b c Simpson, John; Edmund Weiner, eds. (1989). The Oxford English Dictionary (2nd ed.). Oxford: Oxford University Press. ISBN 978-0-19-861186-8.
- ^ a b Pickett, Joseph P., ed. (2000). The American Heritage Dictionary of the English Language (4th ed.). Boston: Houghton Mifflin Company. ISBN 978-0-395-82517-4.
- ^ "diplodocus". Online Etymology Dictionary. Archived from the original on July 1, 2016. Retrieved May 23, 2013.
- ^ a b Maidment, Suzannah C.R. (2024). "Diversity through time and space in the Upper Jurassic Morrison Formation, western U.S.A.". Journal of Vertebrate Paleontology. 43 (5) e2326027. doi:10.1080/02724634.2024.2326027.
- ^ "A chronostratigraphic framework for the Upper Jurassic Morrison Formation, western U.S.A.". Journal of Sedimentary Research. 89 (10). doi:10.1080/02724634.2024.2326027.
- ^ Tschopp, E.; Mateus, O. V.; Benson, R. B. J. (2015). "A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda)". PeerJ. 3: e857. doi:10.7717/peerj.857. PMC 4393826. PMID 25870766.
- ^ "PBDB". PBDB.org.
- ^ Turner, C.E.; Peterson, F. (2004). "Reconstruction of the Upper Jurassic Morrison Formation extinct ecosystem—a synthesis" (PDF). Sedimentary Geology. 167 (3–4): 309–355. Bibcode:2004SedG..167..309T. doi:10.1016/j.sedgeo.2004.01.009. Archived (PDF) from the original on January 25, 2023. Retrieved January 3, 2023.