Linear Algebra and the C Language/a0n6
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as: c00f.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define ARRAY A3
/* ------------------------------------ */
#define RC RC3
/* ------------------------------------ */
void fun(void)
{
double **A = rsymmetric_mR( i_mR(RC,RC),999);
double **AEVect = eigs_V_mR(A, i_mR(RC,RC));
double **InvAEVect = transpose_mR(AEVect, i_mR(RC,RC));
double **AEValue = eigs_mR(A, i_mR(RC,C1));
double **T = i_mR(RC,RC);
double **a = i_mR(RC,RC);
double **b [ARRAY];
double **r [ARRAY];
double **br [ARRAY];
double **EVabr[ARRAY];
int i;
for(i=A0; i<ARRAY; i++)
{
b[i] = c_c_mR( AEVect,i+C1, i_mR(RC,C1),C1);
r[i] = c_r_mR(InvAEVect,i+R1, i_mR(R1,RC),R1);
br[i] = mul_mR(b[i],r[i], i_mR(RC,RC));
EVabr[i] = smul_mR(AEValue[i+R1][C1]*AEValue[i+R1][C1],br[i],
i_mR(RC,RC));
}
clrscrn();
printf(" A:");
p_mR(A, S10,P4,C6);
printf(" AEVect: Eingvectors of A");
p_mR(AEVect, S10,P4,C6);
printf(" AEValue: Eignvalues of A");
p_mR(AEValue, S10,P4,C6);
stop();
clrscrn();
printf(" A**2:");
pow_mR(2, A, T);
p_mR(T, S10,P0,C6);
add_mR(EVabr[0], EVabr[1], T);
add_mR( T, EVabr[2], a);
printf(" We can calculate the nth power of A\n"
" by simply taking the nth power of \n"
" each of the eigenvalues. \n\n\n\n"
" E1**2 b1r1 + E2**2 b2r2 + E3**2 b3r3 = A**2");
p_mR(a, S10,P0,C6);
f_mR(A);
f_mR(AEVect);
f_mR(InvAEVect);
f_mR(AEValue);
f_mR(T);
f_mR(a);
for(i=A0; i<ARRAY; i++)
{
f_mR( b[i]);
f_mR( r[i]);
f_mR( br[i]);
f_mR(EVabr[i]);
}
}
/* ------------------------------------ */
int main(void)
{
time_t t;
srand(time(&t));
do
{
fun();
} while(stop_w());
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
A property of spectral decomposition:
E1**2 * b1r1 + E2**2 * b2r2 + E3**2 * b3r3 = A**2
E1**3 * b1r1 + E2**3 * b2r2 + E3**3 * b3r3 = A**3
...
E1**n * b1r1 + E2**n * b2r2 + E3**n * b3r3 = A**n
We can calculate the nth power of A by simply taking the nth power of each of the eigenvalues.
b: The columns of the eigenvectors of A
r: The rows of eigenvectors of the inverse of A
E: The eignvalues of A.
b1r1 is obtained by multiplying the first column of the eigenvector of A by the first row of the eigenvector of the inverse of A.
Screen output example:
A:
+28.0000 +729.0000 -82.0000
+729.0000 +419.0000 -499.0000
-82.0000 -499.0000 +507.0000
AEVect: Eingvectors of A
+0.4597 +0.7274 +0.5094
+0.7149 -0.6435 +0.2737
-0.5269 -0.2383 +0.8158
AEValue: Eignvalues of A
+1255.5856
-589.9704
+288.3848
Press return to continue.
A**2:
+538949 +366781 -407641
+366781 +956003 -521852
-407641 -521852 +512774
We can calculate the nth power of A
by simply taking the nth power of
each of the eigenvalues.
E1**2 b1r1 + E2**2 b2r2 + E3**2 b3r3 = A**2
+538949 +366781 -407641
+366781 +956003 -521852
-407641 -521852 +512774
Press return to continue
Press X return to stop