Linear Algebra and the C Language/a0k8
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as : c00b.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
int main(void)
{
time_t t;
srand(time(&t));
double ta[R3*C4]={ 1,0,0, 1,
0,1,0, .5,
0,0,1, 1./3.};
double **T = ca_A_mR(ta, i_mR(R3,C4));
double **A = rE_mR( i_mR(R3,C3),999.,1E-3);
double **AT = mul_mR(A,T, i_mR(R3,C4));
double **Ab = gj_TP_mR(c_mR(AT, i_Abr_Ac_bc_mR(R3,C3,C1)));
clrscrn();
printf(" You want to create this nonlinear system of equations :\n");
printf(" (X, Y, Z not 0)\n");
printf("\n");
printf(" a 1/X + b 1/Y + c 1/Z = d \n");
printf(" e 1/X + f 1/Y + g 1/Z = h \n");
printf(" i 1/X + j 1/Y + k 1/Z = l \n");
printf("\n");
printf(" With 1/X = 1, 1/Y = .5, 1/Z = .333333 \n");
printf("\n");
printf(" In fact, you want to find a matrix, \n");
printf(" which has this reduced row-echelon form :\n\n"
"Ab:");
p_mR(T, S5,P3,C6);
stop();
clrscrn();
printf(" If :\n\n A = rE_mR(i_mR(R3,C3),999.,1E-3); ");
p_mR(A, S5,P3,C6);
printf(" And :\n\n T:");
p_mR(T, S5,P3,C6);
printf(" I suggest this matrix : AT = Ab\n\n"
" Ab:");
p_mR(AT, S5,P3,C6);
stop();
clrscrn();
printf("\n With the Gauss Jordan function :\n"
"Ab:");
p_mR(Ab, S5,P3,C6);
stop();
f_mR(Ab);
f_mR(A);
f_mR(T);
f_mR(AT);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Screen output example:
You want to create this nonlinear system of equations :
(X, Y, Z not 0)
a 1/X + b 1/Y + c 1/Z = d
e 1/X + f 1/Y + g 1/Z = h
i 1/X + j 1/Y + k 1/Z = l
With 1/X = 1, 1/Y = .5, 1/Z = .333333
In fact, you want to find a matrix,
which has this reduced row-echelon form :
Ab:
+1.000 +0.000 +0.000 +1.000
+0.000 +1.000 +0.000 +0.500
+0.000 +0.000 +1.000 +0.333
Press return to continue.
If :
A = rE_mR(i_mR(R3,C3),999.,1E-3);
-0.614 +0.781 +0.598
+0.575 -0.753 +0.944
-0.667 -0.312 +0.772
And :
T:
+1.000 +0.000 +0.000 +1.000
+0.000 +1.000 +0.000 +0.500
+0.000 +0.000 +1.000 +0.333
I suggest this matrix : AT = Ab
Ab:
-0.614 +0.781 +0.598 -0.024
+0.575 -0.753 +0.944 +0.513
-0.667 -0.312 +0.772 -0.566
Press return to continue.
With the Gauss Jordan function :
Ab:
+1.000 -0.000 -0.000 +1.000
+0.000 +1.000 +0.000 +0.500
+0.000 +0.000 +1.000 +0.333
Press return to continue.