Linear Algebra and the C Language/a0jz
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as : c00f.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R5
#define CA C5
#define CXY C2
/* ------------------------------------ */
int main(void)
{
double tA[RA*CA]={
/* x**4 x**3 x**2 x**1 x**0 */
+1, +1, +1, +1, +1,
+16, +8, +4, +2, +1,
+81, +27, +9, +3, +1,
+256, +64, +16, +4, +1,
+625, +125, +25, +5, +1,
};
double tb[RA*C1]={
/* y */
-2,
-2,
3,
-9,
4,
};
double xy[RA*CXY] ={
1, -2,
2, -2,
3, 3,
4, -9,
5, 4, };
double **XY = ca_A_mR(xy,i_mR(RA,CXY));
double **A = ca_A_mR(tA,i_mR(RA,CA));
double **b = ca_A_mR(tb,i_mR(RA,C1));
double **Inv = i_mR(CA,RA);
double **Invb = i_mR(CA,C1);
clrscrn();
printf(" Fitting a linear Curve to Data :\n\n");
printf(" x y");
p_mR(XY,S5,P0,C6);
printf(" A :\n x**4 x**3 x**2 x**1 x**0");
p_mR(A,S7,P2,C7);
printf(" b :\n y ");
p_mR(b,S7,P2,C7);
stop();
clrscrn();
printf(" Inv : ");
invgj_mR(A,Inv);
pE_mR(Inv,S12,P4,C10);
printf(" x = Inv * b ");
mul_mR(Inv,b,Invb);
p_mR(Invb,S10,P4,C10);
printf(" The Quartic equation Curve to Data : \n\n"
" s = %+.3ft**4 %+.3ft**3 %+.3f*t**2 %+.3ft %+.3f\n\n"
,Invb[R1][C1],Invb[R2][C1],Invb[R3][C1],
Invb[R4][C1],Invb[R5][C1]);
stop();
f_mR(XY);
f_mR(b);
f_mR(A);
f_mR(Inv);
f_mR(Invb);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Presentation :
Let's calculate the coefficients of a polynomial.
y = ax**4 + bx**3 + cx**2 + dx + e
Which passes through these five points.
x[1], y[1]
x[2], y[2]
x[3], y[3]
x[4], y[4]
x[5], y[5]
Using the points we obtain the matrix:
x**4 x**3 x**2 x**1 x**0 y
x[1]**4 x[1]**3 x[1]**2 x[1]**1 x[1]**0 y[1]
x[2]**4 x[2]**3 x[2]**2 x[2]**1 x[2]**0 y[2]
x[3]**4 x[3]**3 x[3]**2 x[3]**1 x[3]**0 y[3]
x[4]**4 x[4]**3 x[4]**2 x[4]**1 x[4]**0 y[4]
x[5]**4 x[5]**3 x[5]**2 x[5]**1 x[5]**0 y[5]
That we can write:
x**4 x**3 x**2 x 1 y
x[1]**4 x[1]**3 x[1]**2 x[1] 1 y[1]
x[2]**4 x[2]**3 x[2]**2 x[2] 1 y[2]
x[3]**4 x[3]**3 x[3]**2 x[3] 1 y[3]
x[4]**4 x[4]**3 x[4]**2 x[4] 1 y[4]
x[5]**4 x[5]**3 x[5]**2 x[5] 1 y[5]
Let's use the invgj_mR() function to solve
the system that will give us the coefficients a, b, c, d, e
Screen output example:
Fitting a linear Curve to Data :
x y
+1 -2
+2 -2
+3 +3
+4 -9
+5 +4
A :
x**4 x**3 x**2 x**1 x**0
+1.00 +1.00 +1.00 +1.00 +1.00
+16.00 +8.00 +4.00 +2.00 +1.00
+81.00 +27.00 +9.00 +3.00 +1.00
+256.00 +64.00 +16.00 +4.00 +1.00
+625.00 +125.00 +25.00 +5.00 +1.00
b :
y
-2.00
-2.00
+3.00
-9.00
+4.00
Press return to continue.
Inv :
+4.1667e-02 -1.6667e-01 +2.5000e-01 -1.6667e-01 +4.1667e-02
-5.8333e-01 +2.1667e+00 -3.0000e+00 +1.8333e+00 -4.1667e-01
+2.9583e+00 -9.8333e+00 +1.2250e+01 -6.8333e+00 +1.4583e+00
-6.4167e+00 +1.7833e+01 -1.9500e+01 +1.0167e+01 -2.0833e+00
+5.0000e+00 -1.0000e+01 +1.0000e+01 -5.0000e+00 +1.0000e+00
x = Inv * b
+2.6667
-30.3333
+117.8333
-181.1667
+89.0000
The Quartic equation Curve to Data :
s = +2.667t**4 -30.333t**3 +117.833*t**2 -181.167t +89.000
Press return to continue.
Copy and paste in Octave:
function y = f (x)
y = +2.666665810*x^4 -30.333323719*x^3 +117.833298608*x^2 -181.166625268*x +88.999995106;
endfunction
f (+1)
f (+2)
f (+3)
f (+4)
f (+5)