Linear Algebra and the C Language/a0jp
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as : c00d.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RA R5
#define CA C5
/* ------------------------------------ */
int main(void)
{
double xy[6] ={
10, 10,
-5, 1,
7, -10 };
double tA[RA*CA]={
/* x**2 y**2 x y e */
+1, +0, +0, +0, +0,
+0, +1, +0, +0, +0,
+100, +100, +10, +10, +1,
+25, +1, -5, +1, +1,
+49, +100, +7, -10, +1,
};
double tb[RA*C1]={
/* = 0 */
+1,
+1,
+0,
+0,
+0,
};
double **XY = ca_A_mR(xy,i_mR(R3,C2));
double **A = ca_A_mR(tA,i_mR(RA,CA));
double **b = ca_A_mR(tb,i_mR(RA,C1));
double **Inv = i_mR(CA,RA);
double **Invb = i_mR(CA,C1);
clrscrn();
printf("\n");
printf(" Find the coefficients a, b, c, d, of a circle \n\n");
printf(" ax**2 + ay**2 + bx + cy + d = 0 \n\n");
printf(" that passes through these three XY. \n\n");
printf(" x y");
p_mR(XY,S5,P0,C6);
stop();
clrscrn();
printf(" Using the given XY, we obtain this matrix.\n");
printf(" (a = 1. This is my choice)\n\n");
printf(" A :");
p_mR(A,S10,P2,C7);
printf(" b :");
p_mR(b,S10,P2,C7);
printf(" Inv :");
invgj_mR(A,Inv);
pE_mR(Inv,S12,P4,C10);
stop();
clrscrn();
printf(" Inv :");
p_mR(Inv,S10,P4,C10);
printf(" x = Inv * b ");
mul_mR(Inv,b,Invb);
p_mR(Invb,S10,P4,C10);
printf(" The coefficients a, b, c, d, e, of the curve are : \n\n"
" %+.2fx**2 %+.2fy**2 %+.2fx %+.2fy %+.2f = 0\n\n"
,Invb[R1][C1],Invb[R2][C1],Invb[R3][C1],
Invb[R4][C1],Invb[R5][C1]);
stop();
f_mR(XY);
f_mR(A);
f_mR(b);
f_mR(Inv);
f_mR(Invb);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Screen output example:
Find the coefficients a, b, c, d, of a circle
ax**2 + ay**2 + bx + cy + d = 0
that passes through these three XY.
x y
+10 +10
-5 +1
+7 -10
Press return to continue.
Using the given XY, we obtain this matrix.
(a = 1. This is my choice)
A :
+1.00 +0.00 +0.00 +0.00 +0.00
+0.00 +1.00 +0.00 +0.00 +0.00
+100.00 +100.00 +10.00 +10.00 +1.00
+25.00 +1.00 -5.00 +1.00 +1.00
+49.00 +100.00 +7.00 -10.00 +1.00
b :
+1.00
+1.00
+0.00
+0.00
+0.00
Inv :
+1.0000e+00 +1.1102e-16 +3.4694e-18 -3.6863e-18 +8.6736e-19
-4.4409e-16 +1.0000e+00 +0.0000e+00 +4.3368e-19 +0.0000e+00
-3.8132e+00 -7.2527e+00 +4.0293e-02 -7.3260e-02 +3.2967e-02
-1.9780e+00 +1.0879e+00 +4.3956e-02 +1.0989e-02 -5.4945e-02
-4.2088e+01 -3.8352e+01 +1.5751e-01 +6.2271e-01 +2.1978e-01
Press return to continue.
Inv :
+1.0000 +0.0000 +0.0000 -0.0000 +0.0000
-0.0000 +1.0000 +0.0000 +0.0000 +0.0000
-3.8132 -7.2527 +0.0403 -0.0733 +0.0330
-1.9780 +1.0879 +0.0440 +0.0110 -0.0549
-42.0879 -38.3516 +0.1575 +0.6227 +0.2198
x = Inv * b
+1.0000
+1.0000
-11.0659
-0.8901
-80.4396
The coefficients a, b, c, d, e, of the curve are :
+1.00x**2 +1.00y**2 -11.07x -0.89y -80.44 = 0
Press return to continue.
Copy and paste in Octave:
function xy = f (x,y)
xy = +1.000000000*x^2 +1.000000000*y^2 -11.065934068*x -0.890109889*y -80.439560439;
endfunction
f (+10,+10)
f (-5,+1)
f (+7,-10)