Linear Algebra and the C Language/a0be


Install and compile this file in your working directory.

/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R5
#define   CA C5
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
double   xy[8] ={
   1,      0,
   2,      3,
   3,      4,
   4,      0   };

   
double ab[RA*(CA+Cb)]={
/* x**2    y**2    x       y       e    =  0   */
  +1,     +0,     +0,     +0,     +0,     +1, 
  +1,     +0,     +1,     +0,     +1,     +0, 
  +4,     +9,     +2,     +3,     +1,     +0, 
  +9,    +16,     +3,     +4,     +1,     +0, 
 +16,     +0,     +4,     +0,     +1,     +0 
}; 

double **XY = ca_A_mR(xy,i_mR(R4,C2));

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **Q    = i_mR(RA,CA);
double **R    = i_mR(CA,CA);

double **invR = i_mR(CA,CA);
double **Q_T  = i_mR(CA,RA);


double **invR_Q_T = i_mR(CA,RA);
double **x        = i_mR(CA,Cb); // x = invR * Q_T * b

  clrscrn();
  printf("\n");
  printf(" Find the coefficients a, b, c, d, e, of the curve \n\n");
  printf("     ax**2 + by**2 + cx + dy + e  = 0 \n\n");
  printf(" that passes through these four points.\n\n");
  printf("    x     y");
  p_mR(XY,S5,P0,C6);
  printf(" Using the given points, we obtain this matrix.\n");
  printf("  (a = 1. This is my choice)\n\n");  
  printf(" Ab :\n");
  printf("   x**2    y**2    x       y       e    =  0     ");
  p_mR(Ab,S7,P2,C6);
  stop();

    
  clrscrn();
  QR_mR(A,Q,R);    
  printf(" Q :");
  p_mR(Q,S10,P4,C6); 
  printf(" R :");
  p_mR(R,S10,P4,C6);
  stop();

  clrscrn();
  transpose_mR(Q,Q_T);   
  printf(" Q_T :");
  pE_mR(Q_T,S12,P4,C6); 
  invgj_mR(R,invR); 
  printf(" invR :");
  pE_mR(invR,S12,P4,C6);
  stop();
  
  clrscrn();
  printf(" Solving this system yields a unique\n"
         " least squares solution, namely   \n\n");
  mul_mR(invR,Q_T,invR_Q_T);
  mul_mR(invR_Q_T,b,x);
  printf(" x = invR * Q_T * b :");
  p_mR(x,S10,P2,C6);
  printf(" The coefficients a, b, c, d, e, of the curve are : \n\n"
         "  %+.2fx**2 %+.2fy**2 %+.2fx %+.2fy %+.2f = 0\n\n"
            ,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1],x[R5][C1]);  
  
  stop();

  f_mR(XY);  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);
  f_mR(Q);
  f_mR(Q_T);
  f_mR(R);
  f_mR(invR);  
  f_mR(invR_Q_T); 
  f_mR(x); 

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Screen output example:
 Find the coefficients a, b, c, d, e, of the curve 

     ax**2 + by**2 + cx + dy + e  = 0 

 that passes through these four points.

    x     y
   +1    +0 
   +2    +3 
   +3    +4 
   +4    +0 

 Using the given points, we obtain this matrix.
  (a = 1. This is my choice)

 Ab :
   x**2    y**2    x       y       e    =  0     
  +1.00   +0.00   +0.00   +0.00   +0.00   +1.00 
  +1.00   +0.00   +1.00   +0.00   +1.00   +0.00 
  +4.00   +9.00   +2.00   +3.00   +1.00   +0.00 
  +9.00  +16.00   +3.00   +4.00   +1.00   +0.00 
 +16.00   +0.00   +4.00   +0.00   +1.00   +0.00 

 Press return to continue. 


 Q :
   +0.0531    -0.0323    -0.2668    +0.1748    +0.9457 
   +0.0531    -0.0323    +0.7999    -0.5069    +0.3152 
   +0.2123    +0.4447    +0.4686    +0.7332    -0.0000 
   +0.4777    +0.7296    -0.2636    -0.4124    +0.0000 
   +0.8492    -0.5175    -0.0022    +0.0694    -0.0788 

 R :
  +18.8414    +9.5534    +5.3074    +2.5476    +1.5922 
   +0.0000   +15.6759    +0.9758    +4.2525    +0.6244 
   -0.0000    -0.0000    +0.9375    +0.3514    +1.0027 
   +0.0000    -0.0000    +0.0000    +0.5499    -0.1167 
   +0.0000    +0.0000    +0.0000    +0.0000    +0.2364 

 Press return to continue. 


 Q_T :
 +5.3074e-02  +5.3074e-02  +2.1230e-01  +4.7767e-01  +8.4919e-01 
 -3.2345e-02  -3.2345e-02  +4.4475e-01  +7.2957e-01  -5.1753e-01 
 -2.6681e-01  +7.9987e-01  +4.6856e-01  -2.6357e-01  -2.2010e-03 
 +1.7476e-01  -5.0692e-01  +7.3320e-01  -4.1242e-01  +6.9449e-02 
 +9.4573e-01  +3.1524e-01  -8.6284e-15  +7.0729e-15  -7.8811e-02 

 invR :
 +5.3074e-02  -3.2345e-02  -2.6681e-01  +1.7476e-01  +9.4573e-01 
 +0.0000e+00  +6.3792e-02  -6.6396e-02  -4.5089e-01  -1.0946e-01 
 +0.0000e+00  +0.0000e+00  +1.0667e+00  -6.8168e-01  -4.8600e+00 
 -0.0000e+00  -0.0000e+00  -0.0000e+00  +1.8185e+00  +8.9757e-01 
 -0.0000e+00  -0.0000e+00  -0.0000e+00  -0.0000e+00  +4.2295e+00 

 Press return to continue. 


 Solving this system yields a unique
 least squares solution, namely   

 x = invR * Q_T * b :
     +1.00 
     -0.17 
     -5.00 
     +1.17 
     +4.00 

 The coefficients a, b, c, d, e, of the curve are : 

  +1.00x**2 -0.17y**2 -5.00x +1.17y +4.00 = 0

 Press return to continue.


Copy and paste in Octave:
function xy = f (x,y)
  xy = +1.000000000*x^2 -0.166666667*y^2 -5.000000000*x +1.166666667*y +4.000000000;
endfunction

f (+1,+0)
f (+2,+3) 
f (+3,+4) 
f (+4,+0)