Linear Algebra and the C Language/a07m
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as : c00f.c */
/* ------------------------------------ */
#include "v_a.h"
#include "dpoly.h"
/* ------------------------------------ */
int main(void)
{
double xy[10] ={
1, -2,
2, -2,
3, 3,
4, -9,
5, 4, };
double **XY = ca_A_mR(xy,i_mR(R5,C2));
double **A = i_mR(R5,C5);
double **b = i_mR(R5,C1);
double **Ab = i_Abr_Ac_bc_mR(R5,C5,C1);
clrscrn();
printf(" Find the coefficients a, b, c of the curve \n\n");
printf(" y = ax**4 + bx**3 + cx**2 + dx + e \n\n");
printf(" that passes through the points. \n\n");
printf(" x y");
p_mR(XY,S5,P0,C6);
printf(" Using the given points, we obtain this matrix\n\n");
printf(" x**4 x**3 x**2 x**1 x**0 y");
i_A_b_with_XY_mR(XY,A,b);
c_A_b_Ab_mR(A,b,Ab);
p_mR(Ab,S7,P2,C6);
stop();
clrscrn();
printf(" The Gauss Jordan process will reduce this matrix to : \n");
gj_TP_mR(Ab);
p_mR(Ab,S7,P2,C6);
printf("\n The coefficients a, b, c of the curve are : \n\n");
p_eq_poly_mR(Ab);
stop();
clrscrn();
printf(" x y \n");
p_mR(XY,S5,P0,C6);
printf("\n");
printf(" Verify the result : \n\n");
verify_X_mR(Ab,XY[R1][C1]);
verify_X_mR(Ab,XY[R2][C1]);
verify_X_mR(Ab,XY[R3][C1]);
verify_X_mR(Ab,XY[R4][C1]);
verify_X_mR(Ab,XY[R5][C1]);
printf("\n\n\n");
stop();
f_mR(XY);
f_mR(A);
f_mR(b);
f_mR(Ab);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Presentation :
Let's calculate the coefficients of a polynomial.
y = ax**4 + bx**3 + cx**2 + dx + e
Which passes through these five points.
x[1], y[1]
x[2], y[2]
x[3], y[3]
x[4], y[4]
x[5], y[5]
Using the points we obtain the matrix:
x**4 x**3 x**2 x**1 x**0 y
x[1]**4 x[1]**3 x[1]**2 x[1]**1 x[1]**0 y[1]
x[2]**4 x[2]**3 x[2]**2 x[2]**1 x[2]**0 y[2]
x[3]**4 x[3]**3 x[3]**2 x[3]**1 x[3]**0 y[3]
x[4]**4 x[4]**3 x[4]**2 x[4]**1 x[4]**0 y[4]
x[5]**4 x[5]**3 x[5]**2 x[5]**1 x[5]**0 y[5]
That we can write:
x**4 x**3 x**2 x 1 y
x[1]**4 x[1]**3 x[1]**2 x[1] 1 y[1]
x[2]**4 x[2]**3 x[2]**2 x[2] 1 y[2]
x[3]**4 x[3]**3 x[3]**2 x[3] 1 y[3]
x[4]**4 x[4]**3 x[4]**2 x[4] 1 y[4]
x[5]**4 x[5]**3 x[5]**2 x[5] 1 y[5]
Let's use the gj_TP_mR() function to solve
the system that will give us the coefficients a, b, c, d, e
Screen output example:
Find the coefficients a, b, c of the curve
y = ax**4 + bx**3 + cx**2 + dx + e
that passes through the points.
x y
+1 -2
+2 -2
+3 +3
+4 -9
+5 +4
Using the given points, we obtain this matrix
x**4 x**3 x**2 x**1 x**0 y
+1.00 +1.00 +1.00 +1.00 +1.00 -2.00
+16.00 +8.00 +4.00 +2.00 +1.00 -2.00
+81.00 +27.00 +9.00 +3.00 +1.00 +3.00
+256.00 +64.00 +16.00 +4.00 +1.00 -9.00
+625.00 +125.00 +25.00 +5.00 +1.00 +4.00
Press return to continue.
The Gauss Jordan process will reduce this matrix to :
+1.00 +0.00 +0.00 +0.00 +0.00 +2.67
+0.00 +1.00 +0.00 +0.00 +0.00 -30.33
+0.00 +0.00 +1.00 +0.00 +0.00 +117.83
-0.00 -0.00 -0.00 +1.00 -0.00 -181.17
+0.00 +0.00 +0.00 +0.00 +1.00 +89.00
The coefficients a, b, c of the curve are :
y = +2.667x**4 -30.333x**3 +117.833x**2 -181.167x +89.000
Press return to continue.
x y
+1 -2
+2 -2
+3 +3
+4 -9
+5 +4
Verify the result :
With x = +1.000, y = -2.000
With x = +2.000, y = -2.000
With x = +3.000, y = +3.000
With x = +4.000, y = -9.000
With x = +5.000, y = +4.000
Press return to continue.
Copy and paste in Octave:
function y = f (x)
y = +2.666665810*x^4 -30.333323719*x^3 +117.833298608*x^2 -181.166625268*x +88.999995106;
endfunction
f (+1)
f (+2)
f (+3)
f (+4)
f (+5)