Linear Algebra and the C Language/a04w
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as: c00a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R5
#define CA C5
#define Cb C1
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
double ab[RA*(CA+Cb)]={
/* x**4 x**3 x**2 x**1 x**0 */
1, 1., 1., 1., 1., -5.,
16., 8., 4., 2., 1, 8.,
81., 27., 9., 3., 1, -7.,
256., 64., 16., 4., 1, 1.,
625., 125., 25., 5., 1, -4.,
};
double **Ab = ca_A_mR(ab, i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab, i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab, i_mR(RA,Cb));
double **A_T = transpose_mR(A, i_mR(CA,RA));
double **A_TA = mul_mR(A_T,A, i_mR(CA,CA));
double **invA_TA = inv_mR(A_TA, i_mR(CA,CA));
double **invA_TAA_T = mul_mR(invA_TA,A_T, i_mR(CA,RA));
double **x = mul_mR(invA_TAA_T,b, i_mR(CA,Cb)) ;
clrscrn();
printf(" Fitting a Quartic equation Curve to Data:\n\n");
printf(" A:");
p_mR(A, S10,P2,C7);
printf(" b:");
p_mR(b, S10,P2,C7);
printf(" Ab:");
p_mR(Ab, S10,P2,C7);
stop();
clrscrn();
printf(" A_T:");
p_mR(A_T, S10,P2,C7);
printf(" A_TA:");
p_mR(A_TA, S10,P2,C7);
printf(" inv(A_TA):");
p_mR(invA_TA, S10,P4,C7);
stop();
clrscrn();
printf(" inv(A_TA)A_T:");
p_mR(invA_TAA_T, S10,P4,C7);
printf(" x = inv(A_TA)A_T b:");
p_mR(x, S10,P4,C7);
stop();
clrscrn();
printf(" x = inv(A_TA)A_T b:");
p_mR(x, S10,P4,C7);
printf(" The Quartic equation Curve to Data: \n\n"
" y = %+.3f*x^4 %+.3f*x^3 %+.3f*x^2 %+.3f*x %+.3f\n\n"
,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1],x[R5][C1]);
stop();
f_mR(A);
f_mR(b);
f_mR(Ab);
f_mR(A_T);
f_mR(A_TA);
f_mR(invA_TA);
f_mR(invA_TAA_T);
f_mR(x);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Presentation :
Let's calculate the coefficients of a polynomial.
y = ax**4 + bx**3 + cx**2 + dx + e
Which passes through these five points.
x[1], y[1]
x[2], y[2]
x[3], y[3]
x[4], y[4]
x[5], y[5]
Using the points we obtain the matrix:
x**4 x**3 x**2 x**1 x**0 y
x[1]**4 x[1]**3 x[1]**2 x[1]**1 x[1]**0 y[1]
x[2]**4 x[2]**3 x[2]**2 x[2]**1 x[2]**0 y[2]
x[3]**4 x[3]**3 x[3]**2 x[3]**1 x[3]**0 y[3]
x[4]**4 x[4]**3 x[4]**2 x[4]**1 x[4]**0 y[4]
x[5]**4 x[5]**3 x[5]**2 x[5]**1 x[5]**0 y[5]
That we can write:
x**4 x**3 x**2 x 1 y
x[1]**4 x[1]**3 x[1]**2 x[1] 1 y[1]
x[2]**4 x[2]**3 x[2]**2 x[2] 1 y[2]
x[3]**4 x[3]**3 x[3]**2 x[3] 1 y[3]
x[4]**4 x[4]**3 x[4]**2 x[4] 1 y[4]
x[5]**4 x[5]**3 x[5]**2 x[5] 1 y[5]
Let's use the Pinv_Rn_mR() function to solve
the system that will give us the coefficients a, b, c, d, e
Screen output example:
Fitting a Quartic equation Curve to Data :
A :
+1.00 +1.00 +1.00 +1.00 +1.00
+16.00 +8.00 +4.00 +2.00 +1.00
+81.00 +27.00 +9.00 +3.00 +1.00
+256.00 +64.00 +16.00 +4.00 +1.00
+625.00 +125.00 +25.00 +5.00 +1.00
b :
-5.00
+8.00
-7.00
+1.00
-4.00
Ab :
+1.00 +1.00 +1.00 +1.00 +1.00 -5.00
+16.00 +8.00 +4.00 +2.00 +1.00 +8.00
+81.00 +27.00 +9.00 +3.00 +1.00 -7.00
+256.00 +64.00 +16.00 +4.00 +1.00 +1.00
+625.00 +125.00 +25.00 +5.00 +1.00 -4.00
Press return to continue.
A_T :
+1.00 +16.00 +81.00 +256.00 +625.00
+1.00 +8.00 +27.00 +64.00 +125.00
+1.00 +4.00 +9.00 +16.00 +25.00
+1.00 +2.00 +3.00 +4.00 +5.00
+1.00 +1.00 +1.00 +1.00 +1.00
A_TA :
+462979.00 +96825.00 +20515.00 +4425.00 +979.00
+96825.00 +20515.00 +4425.00 +979.00 +225.00
+20515.00 +4425.00 +979.00 +225.00 +55.00
+4425.00 +979.00 +225.00 +55.00 +15.00
+979.00 +225.00 +55.00 +15.00 +5.00
inv(A_TA) :
+0.1215 -1.4583 +6.0243 -9.8958 +5.2500
-1.4583 +17.5694 -72.9167 +120.3889 -64.1667
+6.0243 -72.9167 +304.3299 -505.7292 +271.2500
-9.8958 +120.3889 -505.7292 +847.1528 -458.3333
+5.2500 -64.1667 +271.2500 -458.3333 +251.0000
Press return to continue.
inv(A_TA)*A_T :
+0.0417 -0.1667 +0.2500 -0.1667 +0.0417
-0.5833 +2.1667 -3.0000 +1.8333 -0.4167
+2.9583 -9.8333 +12.2500 -6.8333 +1.4583
-6.4167 +17.8333 -19.5000 +10.1667 -2.0833
+5.0000 -10.0000 +10.0000 -5.0000 +1.0000
x = inv(A_TA)*A_T*b :
-3.6250
+44.7500
-191.8750
+329.7500
-184.0000
Press return to continue.
x = inv(A_TA)*A_T*b :
-3.6250
+44.7500
-191.8750
+329.7500
-184.0000
The Quartic equation Curve to Data :
y = -3.625*x^4 +44.750*x^3 -191.875*x^2 +329.750*x -184.000
Press return to continue.
Copy and paste in Octave:
function y = f (x)
y = -3.625*x^4 +44.750*x^3 -191.875*x^2 +329.750*x -184.000;
endfunction
f (+1)
f (+2)
f (+3)
f (+4)
f (+5)