Linear Algebra and the C Language/a03z
Install and compile this file in your working directory.
/* ------------------------------------ */
/* Save as: c00e.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R5
#define CA C5
/* ------------------------------------ */
#define FACTOR_E +1.E-2
/* ------------------------------------ */
int main(void)
{
double tA[RA*CA]={
/* x**4 x**3 x**2 x**1 x**0 */
1, 1., 1., 1., 1.,
16., 8., 4., 2., 1,
81., 27., 9., 3., 1,
256., 64., 16., 4., 1,
625., 125., 25., 5., 1,
};
double tb[RA*C1]={
/* y */
-5.,
8.,
-7.,
1.,
-4.
};
double **A = ca_A_mR(tA, i_mR(RA,CA));
double **b = ca_A_mR(tb, i_mR(RA,C1));
double **Pinv = i_mR(CA,RA);
double **Pinvb = i_mR(CA,C1);
clrscrn();
printf(" Fitting a linear Curve to Data:\n\n");
printf(" A:");
p_mR(A, S10,P2,C7);
printf(" b:");
p_mR(b, S10,P2,C7);
stop();
clrscrn();
printf(" Pinv = V invS_T U_T ");
Pinv_Rn_mR(A,Pinv,FACTOR_E);
pE_mR(Pinv, S12,P4,C10);
printf(" Pinv b ");
mul_mR(Pinv,b,Pinvb);
p_mR(Pinvb, S10,P4,C10);
printf(" The Quartic equation Curve to Data: \n\n"
" y = %+.3f*x^4 %+.3f*x^3 %+.3f*x^2 %+.3f*x %+.3f\n\n"
,Pinvb[R1][C1],Pinvb[R2][C1],Pinvb[R3][C1],
Pinvb[R4][C1],Pinvb[R5][C1]);
stop();
f_mR(b);
f_mR(A);
f_mR(Pinv);
f_mR(Pinvb);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Presentation :
Let's calculate the coefficients of a polynomial.
y = ax**4 + bx**3 + cx**2 + dx + e
Which passes through these five points.
x[1], y[1]
x[2], y[2]
x[3], y[3]
x[4], y[4]
x[5], y[5]
Using the points we obtain the matrix:
x**4 x**3 x**2 x**1 x**0 y
x[1]**4 x[1]**3 x[1]**2 x[1]**1 x[1]**0 y[1]
x[2]**4 x[2]**3 x[2]**2 x[2]**1 x[2]**0 y[2]
x[3]**4 x[3]**3 x[3]**2 x[3]**1 x[3]**0 y[3]
x[4]**4 x[4]**3 x[4]**2 x[4]**1 x[4]**0 y[4]
x[5]**4 x[5]**3 x[5]**2 x[5]**1 x[5]**0 y[5]
That we can write:
x**4 x**3 x**2 x 1 y
x[1]**4 x[1]**3 x[1]**2 x[1] 1 y[1]
x[2]**4 x[2]**3 x[2]**2 x[2] 1 y[2]
x[3]**4 x[3]**3 x[3]**2 x[3] 1 y[3]
x[4]**4 x[4]**3 x[4]**2 x[4] 1 y[4]
x[5]**4 x[5]**3 x[5]**2 x[5] 1 y[5]
Let's use the Pinv_Rn_mR() function to solve
the system that will give us the coefficients a, b, c, d, e
Screen output example:
Fitting a linear Curve to Data :
A :
+1.00 +1.00 +1.00 +1.00 +1.00
+16.00 +8.00 +4.00 +2.00 +1.00
+81.00 +27.00 +9.00 +3.00 +1.00
+256.00 +64.00 +16.00 +4.00 +1.00
+625.00 +125.00 +25.00 +5.00 +1.00
b :
-5.00
+8.00
-7.00
+1.00
-4.00
Press return to continue.
Pinv = V * invS_T * U_T
+4.1667e-02 -1.6667e-01 +2.5000e-01 -1.6667e-01 +4.1667e-02
-5.8333e-01 +2.1667e+00 -3.0000e+00 +1.8333e+00 -4.1667e-01
+2.9583e+00 -9.8333e+00 +1.2250e+01 -6.8333e+00 +1.4583e+00
-6.4167e+00 +1.7833e+01 -1.9500e+01 +1.0167e+01 -2.0833e+00
+5.0000e+00 -1.0000e+01 +1.0000e+01 -5.0000e+00 +1.0000e+00
Pinv * b
-3.6250
+44.7500
-191.8750
+329.7500
-184.0000
The Quartic equation Curve to Data :
y = -3.625*x^4 +44.750*x^3 -191.875*x^2 +329.750*x -184.000
Press return to continue.
Copy and paste in Octave:
function y = f (x)
y = -3.625*x^4 +44.750*x^3 -191.875*x^2 +329.750*x -184.000;
endfunction
f (+1)
f (+2)
f (+3)
f (+4)
f (+5)