Find the Derivative by Definition
1.


2.

![{\displaystyle {\begin{aligned}f'(x)&=\lim _{\Delta x\to 0}{\frac {[2(x+\Delta x)+2]-(2x+2)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2x+2\Delta x+2-2x-2}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2\Delta x}{\Delta x}}\\&=\mathbf {2} \end{aligned}}}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/d2ff13db48115ad15ca0fb870ba1cfd847f64fd0.svg)
3.


4.

![{\displaystyle {\begin{aligned}f'(x)&=\lim _{\Delta x\to 0}{\frac {[2(x+\Delta x)^{2}+4(x+\Delta x)+4]-(2x^{2}+4x+4)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {4x\Delta x+2\Delta x^{2}+4\Delta x}{\Delta x}}\\&=\lim _{\Delta x\to 0}4x+2\Delta x+4\\&=\mathbf {4x+4} \end{aligned}}}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/498835143e20132ee1839df6aaf684e54dfbb8b4.svg)
5.


6.


7.


8.


9.


Prove the Constant Rule
10. Use the definition of the derivative to prove that for any fixed real number

,
![{\displaystyle {\frac {d}{dx}}\left[cf(x)\right]=c{\frac {d}{dx}}\left[f(x)\right]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/7257a7b32e3dd4d3ef6bfd2c6315f45c8cb0c561.svg)
![{\displaystyle {\begin{aligned}{\frac {d}{dx}}\left[cf(x)\right]&=\lim _{\Delta x\to 0}{\frac {cf\left(x+\Delta x\right)-cf\left(x\right)}{\Delta x}}\\&=c\lim _{\Delta x\to 0}{\frac {f(x+\Delta x)-f(x)}{\Delta x}}\\&=c{\frac {d}{dx}}\left[f(x)\right]\end{aligned}}}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/bcfc7ac4df3b8985d7d000ed9ca141d3f2b7a1d8.svg)
Find the Derivative by Rules
Power Rule
11.


12.
![{\displaystyle f(x)=3{\sqrt[{3}]{x}}\,}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/c7b861dfb68b951e23d614557d2cb071669b0851.svg)
![{\displaystyle f'(x)=3({\frac {1}{3}})x^{-2/3}=\mathbf {\frac {1}{\sqrt[{3}]{x^{2}}}} }](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/814676dda6261891b5e32ddebc8efb233ad4c411.svg)
13.


14.


15.

![{\displaystyle f'(x)={\frac {-2}{x^{3}}}+x^{-2/3}=\mathbf {{\frac {-2}{x^{3}}}+{\frac {1}{\sqrt[{3}]{x^{2}}}}} }](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/9a68756c6e8b616e4d0a37189a8058c881b7391c.svg)
16.


17.
![{\displaystyle f(x)={\frac {3}{x^{4}}}-{\sqrt[{4}]{x}}+x\,}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/e623fc9dc5921a33a5101f6a43b712a078ff7f12.svg)
![{\displaystyle f'(x)={\frac {-12}{x^{5}}}-{\frac {1}{4}}x^{-3/4}+1=\mathbf {{\frac {-12}{x^{5}}}-{\frac {1}{4{\sqrt[{4}]{x^{3}}}}}+1} }](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/11ce424291dfead9cbff9b60892c61127980814d.svg)
18.

![{\displaystyle f'(x)=2x^{-2/3}-0.4x^{-0.6}-{\frac {18}{x^{3}}}=\mathbf {{\frac {2}{\sqrt[{3}]{x^{2}}}}-{\frac {0.4}{x^{0.6}}}-{\frac {18}{x^{3}}}} }](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/dd6cefc8f7b96dc0555a05043e35f044c8dc37ff.svg)
19.
![{\displaystyle f(x)={\frac {1}{\sqrt[{3}]{x}}}+{\sqrt {x}}\,}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/e6db0bee5880f21a927a7926cdb71d77a3a78e87.svg)
![{\displaystyle f'(x)=-{\frac {1}{3x^{4/3}}}+{\frac {1}{2{\sqrt {x}}}}=\mathbf {{\frac {-1}{3x{\sqrt[{3}]{x}}}}+{\frac {1}{2{\sqrt {x}}}}} }](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/e98e549cc15a160f8d8ee43f5d93c0795e27c668.svg)
Product Rule
20.


21.


22.


23.


Quotient Rule
29.


30.


31.


32.


33.


34.


35.


Chain Rule
43.

Let

. Then

44.

Let

. Then

45.

Let

. Then

46.

47.

48.

49.

50.

51.

52.

53.

Let

. Then

Exponentials
54.


55.

Let

. Then

56.

57.


Logarithms
58.


47.


59.

Let

. Then

60.


61.


Trigonometric functions
62.


64.


More Differentiation
65.
![{\displaystyle {\frac {d}{dx}}[(x^{3}+5)^{10}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/322d22bf641e5d6a35d63be10b39c7353404dfcd.svg)

66.
![{\displaystyle {\frac {d}{dx}}[x^{3}+3x]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/052c718ffadbb9cb4954b7dd5791f055ff1ce77c.svg)

67.
![{\displaystyle {\frac {d}{dx}}[(x+4)(x+2)(x-3)]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/160ae1c70a96f198eb4c1fd16d0ed2940ce4acfb.svg)
Let

. Then



68.
![{\displaystyle {\frac {d}{dx}}[{\frac {x+1}{3x^{2}}}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/9320f75bc1f03266f545ee487bd178d212956699.svg)

69.
![{\displaystyle {\frac {d}{dx}}[3x^{3}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/d330c0494fcf0513cd524464634f6360c2ed4c23.svg)

70.
![{\displaystyle {\frac {d}{dx}}[x^{4}\sin x]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/ba69464a1939efb019dcd0b74373bfa4681eb4f3.svg)

71.
![{\displaystyle {\frac {d}{dx}}[2^{x}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/70c4dd6b628068248913d496b20327629fc271d2.svg)

72.
![{\displaystyle {\frac {d}{dx}}[e^{x^{2}}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/70feadeaf0a4d91cf66a795d8d2f169e942ec523.svg)

73.
![{\displaystyle {\frac {d}{dx}}[e^{2^{x}}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/ea1c7dffc918e0d7462c5f97f9a145db84a16597.svg)

Implicit Differentiation
Use implicit differentiation to find y'
74.

75.

Logarithmic Differentiation
Use logarithmic differentiation to find
:
76.
![{\displaystyle y=x({\sqrt[{4}]{1-x^{3}}}\,)}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/957f79e0769565723820a31ac23d16be33565100.svg)
77.

78.

79.

80.

Equation of Tangent Line
For each function,
, (a) determine for what values of
the tangent line to
is horizontal and (b) find an equation of the tangent line to
at the given point.
81.

82.

83.

84.

85.

86.

87. Find an equation of the tangent line to the graph defined by

at the point (1,-1).
88. Find an equation of the tangent line to the graph defined by

at the point (1,0).
Higher Order Derivatives
89. What is the second derivative of

?

90. Use induction to prove that the (n+1)th derivative of a n-th order polynomial is 0.
Advanced Understanding of Derivatives
91. Let

be the derivative of

. Prove the derivative of

is

.
Suppose

. Let

.

Therefore, if

is the derivative of

, then

is the derivative of

.

92. Suppose a continuous function

has three roots on the interval of

. If

, then what is ONE true guarantee of

using
- (a) the Intermediate Value Theorem;
- (b) Rolle's Theorem;
- (c) the Extreme Value Theorem.
93. Let

, where

is the inverse of

. Let

be differentiable. What is

? Else, why can

not be determined?
If

, then

. We can use implicit differentiation.
![{\displaystyle {\begin{aligned}{\frac {d}{dx}}\left[f\left(g(x)\right)\right]&={\frac {d}{dx}}\left(x\right)\\g^{\prime }(x)f^{\prime }\left(g(x)\right)&=1\\g^{\prime }(x)&={\frac {1}{f^{\prime }\left(g(x)\right)}}\\&={\frac {1}{f^{\prime }\left(f^{-1}(x)\right)}}\\\end{aligned}}}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/a5d8d63d67a2d7c246b198904ce6b548fbe8f4ea.svg)
94. Let

where

is a constant.
Find a value, if possible, for
that allows each of the following to be true. If not possible, prove that it cannot be done.
- (a) The function
is continuous but non-differentiable.
- (b) The function
is both continuous and differentiable.
(a)

.
. However, for
, we find that
, so
makes the function continuous but non-differentiable.
(b) There is no
that allows the function to be differentiable and continuous.
- A proof of this is simple.

- However,

- To allow the best possible chance, we will let
:

- For any other
, one will have an infinity on the left-hand sided limit. Therefore, there is no possible
that allows the function to be differentiable and continuous.